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Abstract-The problem of steady natural convection film boiling about a heated isothermal vertical plate in 
a porous medium filled with a subcooled liquid is considered. With the boundary layer approximations, 
similarity solutions are obtained for the buoyancy-induced flow in the vapor and subcooled liquid layers with 
a distinct interface. At a given vapor Rayleigh number, the Nusselt number is found to be uniquely dependent 
on the vapor film’s dimensionless thickness, which in turn depends on three dimensionless parameters 
related to the degree of superheating of the wall, the extent of the subcooling of the surrounding liquid, and a 
property ratio of the vapor and the liquid phases. It is found that the effect of the increase of the subcooling of 
the surrounding fluid tends to decrease the vapor boundary layer thickness, increase the liquid boundary 
layer thickness and increase the surface heat flux. On the other hand, the increase of the wall superheating 
tends to increase the vapor layer thickness, decrease the liquid layer thickness and increase the surface heat 

flux. Application to boiling heat transfer about a dike intruded into an aquifer is discussed. 

NOMENCLATURE 

specific heat of the convective fluid; 
a quantity defined in equation (38); 
dimensionless stream function ; 
local heat transfer coefficient ; 
latent heat of vaporization ; 
permeability of the porous medium; 
thermal conductivity of the porous medium ; 
mass flux ; 
local Nusselt number ; 
pressure; 
local heat transfer rate; 
~ & PCx”(P, - PvWpL 1 Ii2 

Pm ~vaLPmS& 
, property 

ratio of the vapor and the liquid phase; 

local Rayleigh number ; 
= cpL( T, - T,)/hf,, dimensionless degree of 
subcooling of liquid ; 
= cPv(Tw - TJh,,, dimensionless degree of 
wall superheating; 
temperature; 
Darcy’s velocity in x-direction ; 
Darcy’s velocity in y-direction; 
coordinate along the surface ; 
coordinate perpendicular to the surface. 

Greek symbols 

a, equivalent thermal diffusivity ; 

8, the coefficient of thermal expansion ; 
4 boundary layer thickness; 

II9 similarity variable ; 
0, dimensionless temperature; 

I4 viscosity of the convective fluid; 

P9 density of the convective fluid; 

$9 stream function. 

Subscripts 

s, saturated condition ; 

:, 
vapor phase ; 
liquid phase ; 

CQ, condition at infinity ; 
W, condition at the wall. 

INTRODUCTION 

THE PROBLEM of boiling heat transfer in a porous 
medium has important applications in engineering 
and geophysics. In a recent paper, Parmentier [l] 
studied the problem of boiling heat transfer about a 
heated vertical surface in a permeable medium filled 
with a subcooled water, with application to dike 
intrusion in an aquifer. Parmentier [l] postulated that 
when boiling occurs adjacent to a vertical surface in a 
porous medium, a thin vapor film will form. With the 
aid of a p-T phase diagram, he argued that the vapor 
film and the liquid water are separated by a distinct 
interface with no mixed region in between. As a result 
of this approximation, the mathematical formulation 
of the problem is considerably simplified. By 
assuming : (a) that the density of the subcooled water is 
constant; (b) the density of the vapor is small 
compared with the saturated water; and (c) that heat 
conduction in the longitudinal direction is small 
compared with the transverse direction, Parmentier 
obtained an approximate solution for Nusselt number 
for this problem. 

The assumption that the vapor and liquid phases are 
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separated by a distinct interface has always been made 
in the classical film boiling heat transfer literature. 
Earlier work on natural convection film boiling about 
a vertical plate in a Newtonian fluid has been studied 
by Bromley [2] and by Ellison [3] based on the 
assumptions that inertia force of the vapor film is 
small, the interface velocity is zero, and the 
temperature profile in the vapor film is linear. Koh [4] 
studied the same problem based on boundary layer 
theory, and taking into consideration the momentum 
transfer at the vapor liquid interface. At the same time, 
Sparrow and Cess [5] studied the effect of subcooled 
liquid on film boiling with the assumption of zero 
interface velocity. Sparrow and Cess’s problem was 
later studied by Nishikawa, Ito and Matsumoto [6] 
who used the same hydrodynamic interfacial 
boundary conditions as that of Koh [4]. 

Most recently, Cheng [7] obtained a similarity 
solution for stable film boiling about an inclined 
surface in a porous medium filled with saturated liquid 
(i.e. zero subcooling), based on the usual assumptions 
made in the classical film boiling literature. In the 
present work, the effect of subcooled liquid on stable 
film boiling about a vertical plate in a porous medium 
will be considered. The assumptions made in this 
paper are similar to the previous work [7], and 
similarity solutions are obtained for both the vapor 
and liquid phases. These two solutions are 
interconnected through the interface boundary 
conditions. Numerical solutions for the similarity 
equations follow closely the work by Sparrow and 
Cess [S]. A closed form solution for Nusselt number is 
obtained in terms of Rayleigh number and the 
dimensionless boundary layer thickness of the vapor 
layer; the latter is found to depend on three 
dimensionless parameters relating to the degree of the 
superheating of the wall, the extent of the subcooling of 
the surrounding liquid, and a property ratio of the 
vapor and the liquid phases. It is found that the effect of 
the increase of the subcooling of the surrounding fluid 
tends to decrease both the vapor and the liquid 
boundary layer thicknesses, and to increase the surface 
heat flux. On the other hand, the increase of the wall 
superheating tends to increase the vapor layer 
thickness, decrease the liquid layer thickness, and 
increase the surface heat flux. Application to boiling 
heat transfer about a dike intruded into an aquifer is 
discussed. 

FORMULATION OF THE PROBLEM 

Consider the problem of steady heating of an 
isothermal vertical plate embedded in a porous 
medium filled with a subcooled liquid as shown in Fig. 
1. When the wall temperature T, is sufficiently higher 
than the saturated temperature T, corresponding to its 
pressure, a vapor film will form adjacent to the vertical 
plate. To investigate the two-phase buoyancy-induced 
flow in a porous medium adjacent to a vertical plate, 
the following assumptions will now be made: 

FIG. 1. Coordinate system. 

(1) A distinct boundary exists between the vapor and 
the subcooled liquid with no mixed region in between. 

(2) The interface at y = 6, is smooth and stable, and 
is at a constant temperature T, 

(3) Boundary layer approximations are applicable. 
(4) Boussinesq approximations are invoked in the 

liquid phase so that density is assumed to be constant 
except in the buoyancy force term where density is 
assumed to be linearly proportional to the 
temperature. 

(5) All other properties of the liquid and vapor 
phases and the porous medium are constant. In 
particular, the density of the vapor is assumed to be 
constant in the buoyancy force term (p, - p,)g. This 
is due to the fact that pr: >> pv so that a more accurate 
representation of the vapor density would not 
significantly affect the results. 

(6) Darcy’s law is applicable to both phases. 
It is worth noting that assumptions (l)-(5) are the 

usual approximations used in treating classical film 
boiling heat transfer problems, and that assumption 
(4) was not used by Parmentier. With assumptions 
(l)-(6), the governing equations for the porous 
medium filled with the superheated vapor at y < 6, are 

!%+?Lo 
ay 

(1) 

u” = - $(P” - P& (2) 

aT” aT” a2T” 
U”X + 0°F = a,ayl (3) 

while those for the porous medium filled with the 
suhcooled liquid at y > 6, are 

!%+?Lo 
ay 

(4) 

uJ_ = KB,,p,(T, - T,)g 
(5) 

PL 

aT, aT, d2T, 
UL~ + 0~7 = aLayT (6) 

where the subscripts u, L and co denote the quantities 
associated with the vapor layer, liquid layer and 
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condition at a great distance from the heating plate; u 
and I) are the Darcy’s velocities in the x and Y 
directions ; p, p and /I are the density, viscosity and 

aJILaTL atiLaTL a2T, _--_--=c$ 
ay ax ax ay ayz’ (17) 

thermal expansion coefficient of the convecting fluid; Boundary conditions (7a), @a), (10) and (11) in terms 

K and a are the permeability and the equivalent of stream functions are 
thermal diffusivity of the porous medium; p and T are 
the pressure and temperature. It is worth noting that y=o, al(l,=, 

ax (18) 
equation (2) indicates that the vertical velocity in the 
vapor layer is constant. a*, 

The boundary conditions at the wall and at a great 
y+co, -=o 

aY 
(19) 

distance from the wall are 

y = 0, V” = 0, 

Y+a, UL = 0, 

where T, > T, 2 T,. 

a*, a*, db 
dx+dydx y=a” 1 [ 

atiL wL db 
T, = Tw, 0, b) & =pL dx+dydx y=6, 1 

(20) 

TL=T, (hb) 

, . 

(21) At the vapor-liquid interface at y = a,, the 
continuity of temperature demands 

Y = a,, TV = T, = TL. (9) 

From the continuity of mass flow across the interface, 
we have 

P”(V” - u”%),;.= PL(VL - ULsx... = fh (10) 

where tia is the mass flux through the interface. 

The energy balance across the interface gives 

y=a (“) 
” 

where k is the equivalent thermal conductivity of the 
porous medium and hf, is the latent heat of 
vaporization of the liquid at T,. Equation (11) shows 
that the energy across the interface is partly conducted 
into the subcooled liquid and partly is used to 
evaporate liquid at a rate of &. 

We now introduce the stream functions for the 
liquid and vapor phases such that 

w a*, 
u”=ay’ Vu= -ax (l&b) 

wL wL 
uL=ay’ OL= -ax (1% b) 

so that the continuity equations for both phases are 
satisfied automatically. In terms of the stream 
functions, equations (2), (3), (5) and (6) become 

w K 
- -(Pm - P”k ay- P” 

a*,a7-, a*,a7-, a2T, 
--_-----~a- 

ay ax ax ay ” ay2 (15) 

wL K 
_ = ~PmSLadTI. - T,) ay (16) 

Equations (14)-( 17) with boundary conditions (7b), 
(8b), (9), (18)-(21) will now be solved by similarity 
transformations. To this end, we first introduce the 
following new dependent and independent variables 
for the vapor layer 

rl” = J(R%, “)YlX (22a) 

ti, = a, J(Ra,, ,) f,(q) (22b) 

T 
fJ”(rl”) = +$ 

w s 
WC) 

where Ra,. u = K(p, - pu)gx/~uau is the local 
Rayleigh number for the vapor phase. In terms of these 
variables, the governing equations (14) and (15) with 
boundary conditions (7a, b) and (9) are 

f: = 1 (23) 

2&L + f”e: = 0 (24) 

with boundary conditions 

f"(0) = e"(o)- 1 = 0 Wa, b) 

e"(rl",) = 0 (26) 

where the prisms denote the differentiation with 
respect to fjV, and qva is the dimensionless vapor 
boundary layer thickness i.e. 

rlva = @~),=a, = ,/(Rax. M/x, 

Equations (23) and (24) with boundary conditions (25) 
and (26) have the following exact solutions 

f" =rlu (27) 

6” = 1 - erf(?)/erf(y). (28) 

It follows from equations (27) and (28) that 

(2% b) 
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1 
v, = - 

J[ 
Z(PD - P”)g 

2 ” 1 (f” - ?“fl) 

and 

Thus, the velocity and temperature fields in the vapor 
phase are uniquely determined if the value of the 
dimensionless vapor boundary layer thickness, rlv6. is 
known. However, the value of qva can only be 
determined by solving simultaneously the equations 
for the liquid phase and satisfying interface boundary 
conditions. To solve the equations for the liquid phase, 
we introduce the following new variables for the liquid 
layer 

(31a) 

(31b) 

TL- T, 
@L(tlL) = T_T 

s a 
(3lc) 

where Ra,, ,. = PJVLS(T, - T,)x/pLaL is the 
local Rayleigh number for the liquid layer. In terms of 
the variables given by equations (31), the governing 
equations for the liquid phase, i.e. equations (16) and 
(17) become 

fi = @L. (32) 
20: + fLei = 0. (33) 

Equation (32) shows that the dimensionless vertical 
velocity and dimensionless temperature are identical 
in the liquid layer. The interface boundary conditions 
(at y = 6,, i.e. at 9” = qua for the vapor layer and at I]~ 
= 0 for the liquid layer) for the continuity of 
temperature and mass flux are 

e,(o) = 1 (34) 

(35) 

where SC = cPL( T, - T,)/hrg is a measure of the degree 
of subcooling of the liquid and 

R ~ fi PLa”(P, - PvkpL 1’2 

Pm II wLpdL4, 1 
with cPL = k,. ~1p-a~ denoting the specific heat of the 
liquid. It is worth noting that boundary condition (35) 
is related to the rate of evaporation. 

The boundary conditions at a great distance from 
the wall are 

f;(m) = 0 (36) 

0,(m) = 0 (37) 

It follows from equation (31b) that the velocities in the 
liquid layer are 

UL = +LdT, - Tm)f', 

and 

1 

J[ 

aLO&.g(T, - 7,) aL= -- 
2 PLX 1 

(384 

where 

x [f L - W'lJx)f i.1 (38b) 

Kp,BLg(T, - 7-z) 

1 

“’ C 
L 

~ 

pLaL 

Note that if the values of q,& R and SC are prescribed, 
equations (32) and (33) with boundary conditions 
(34)-(37) are identical to the problem of single-phase 
free convection in a porous medium adjacent to a 
vertical plate with suction which has been solved by 
Cheng [8]. 

The coupling of the equations for the vapor and 
liquid layers is through the dimensionless vapor 
boundary layer thickness qva and the energy balance 
equation across the interface which is given by 

Sh = 

where Sh = cpu(Tw - TJh,, is a measure of the wall 
superheating with cpv = ku/pva,. Note that in arriving 
at equation (39) we have used the relation 6, = 
xqJJ(Ra,, ,) and consequently dd,/dx = 6”/2x. 

NUMERICAL SOLUTIONS 

There are three parameters in the transformed 
problem, namely, R, SC and Sh. The first two 
parameters arise from the liquid layer equations 
through the suction term in the boundary condition, 
while the last parameter arises from the energy balance 
equation across the interface. We now proceed to 
obtain the numerical solutions to the problem using a 
procedure similar to that of Sparrow and Cess [s] who 
solved the equations for the vapor layer and the liquid 
layer separately with prescribed values of qua andf ,(O). 

(1) For a prescribed value of qUgr solution for the 
vapor layer can be computed according to equations 
(27)-(30). The results for w”(O) and e:(r),,) vs qva are 
plotted in Fig. 2. 

(2) For a prescribed value of fL(0) numerical 
integration of equations (32)-(37) were carried out 
using the Runge-Kutta method. Results for wL(0) vs 
fJ0) are plotted in Fig. 3. 

(3) For prescribed values of R, SC and qvdr the values 
of fL(0) and 0&,) can be determined according to 
equation (35) and Fig. 2, respectively. With the value of 
fL(0) thus obtained, the value of w,(O) is determined 
from Fig. 3. Finally, the value of Sh can be determined 
from equation (39). Results of qva vs Sh at different 
values of Sc and R are presented in Fig. 4. Note that the 
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FIG. 2. Dimensionless temperature gradients in the vapor 
phase vs qv+ 

FIG. 3. t&(O) vs fL(0) in the liquid phase. 

uppermost curves are for the case of zero subcooling 
(i.e. T, = T,), for which the value of fly8 depends only 
on Sh and independent of R, which has been discussed 
in the previous work by Cheng [7’J. Figure 4 also 
shows that the effect of subcoohng on t&d is larger at 
smaller R. 

RESULTS AND DISCUSSlON 

Heat transfer rest&s 
The local surface heat flux is given by 

which can be expressed in terms of the similarity 
variables to give 

To examine the effects of liquid subcooling and wall 
superheating on surface heat flux, it is convenient to 
rewrite equation (40b) as 

3.0 - (a) R=0.05 

Sh 

3.0 - (bf R = 0.25 

0.0 1 I I I 1 
0 10 20 30 40 

Sh 

3.0 

Lo 2.0 

F-’ 

I.0 

0.0 
0 20 30 40 

Sh 

1 

20 

Sh 

FIG. 4. vvd vs Sh and SC at (a) R = 0.05 ; (b) R = 0.25 ; 
(c) R = OS; (d) R = 1 
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where the right-hand side of equation (40~) is plotted 
vs Sh in Fig. 5 for the cases of (a) SC = 0 and (b) SC 
= 0.05 and R = 0.5, where the first case is independent 
of R. Figure 5 shows that the dimensionless surface 
heat flux increases as Sh or SC is increased. 

The local heat transfer coefficient and the local 
Nusselt number are defined as 

and Nu, = F. (41a, b) 
in.” 

Substituting equation (40b) into equation (41a) yields 
the following expression for the local Nusselt number 

NU 
---L = - e:(o). 
JRaxs v 

When equation (30) is substituted into equation (42), 
one obtains 

N% 
- = J7t er:(?J2) ’ JR+ v (43) 

For a given value of Ra,, “, equation (43) shows that the 
local Nusselt number depends uniquely on qua; and 
that the value of Nu, increases as ~~~ increases. As 
shown in Fig. 4, rlva is a function of Sh, SC and R. It 
follows that Nu,lJRaxs v (Fig. 6) is also a function of 
Sh, SC and R. It is noted from these figures that (a) the 
values of NuJJRa,, v decreases as Sh or R is increased 
and as SC is decreased, (b) the value of Nu,/,/Ra,, v is 
independent of R for zero subcooling [7], (c) the value 

of Nu,lJRa,, V approaches a value of 0.5642 
asymptotically as Sh --t co. The last observation can be 
shown analytically if we examine equations (42) and 
(43) for the following asymptotic cases: 

(a) qva + 0. According to Fig. 4 this limiting case 
corresponds to the case of large subcooling and small 
wall superheating. For this situation, most of the heat 
supplied by the wall is used to heat the subcooled 
liquid, and only a small portion of heat supplied is 
available for vaporization. For qv6/2 -C 1, equations 
(28) and (30) can be expanded into a power series to 
give 

O,=l-?[l+(&-r7:)/12+...]. (44a) 
” 

.a 
/’ 

6- 

- sc=o 

0 2 4 6 0 IO 12 

Sh 

FIG. 5. Effects of Sh and SC on the dimensionless surface heat 
flux. 

2.4 

0 b 6 12 16 (D 
Sh 

- SC .0.50 
---- SC l 0.30 
-.- SC~0.15 
-..- SC.0 

t: & 0 

. 

2 

FIG. 

(d) Rzl.0 - SC = 0.50 
---- &:0,X 
- -.-.. SC : 0.15 
-..- ._ & = 0 

0 b a n 16 m 

Sh 

6. (a) &I JRa,,, vs Sh and SC at R = 0.05; (b) 
Nu,fJRa,$ v vs Sh and SC at R = 0.25 ; (c) NuJJRa,, v vs Sh 
and SC at R = 0.5; (d) Nu,/JRa,,. vs Sh and SC at R = 1. 

2.0 

2.4 

(c) R= 0.50 - SC = 0.50 
-----sc = 0.30 
- -sc * 0.15 
- -sc=o 

0.01 ’ ’ ’ ’ ’ ’ ’ ’ 1 --’ 
0 4 0 12 I6 m 

Sh 

2.0, 
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and In the limit of tlvd -+ co, equations (48a) and (49) give 

&=- 
1 

exp(rlt/4)rl& - Wl2) + . * *I 
ev = 1 - erf 2 , 

0 
(50) 

= -$1+0.0833&+...]. (44b) 
” 

It follows from equations (42) and (44b) that 

~%‘lvd - = 1 + o.0833qzd + ’ ’ ’ , 

JRa,.. 
for &, < 2. 

Neglecting the second-order terms in equation (44) 
one obtains 

(45a) 

NWlva 
$G= 

1, for &, + 0. (45b) 

Equation (45a) shows that qV is a linear function of nva 
as qvd + 0. Moreover, as qva + 0, equation (39) gives 

- q’(o) = RSh 
sc3’2t,,d (46) 

where Q’(0) is the temperature gradient of the liquid 
phase at the interface as qvd + 0. Note that boundary 
condition (35) gives fL(0) + 0 as &, + 0. Thus, et’(O) 
corresponds to the temperature gradient at the wall for 
the case of free convection about a vertical plate 
without suction. Solving for qvd from equation (46) and 
substituting it into equation (45b) gives 

Wk. L 
[KpmjlLg(T, - Tm)X/flLQL]1’2 = - et’(o) (47) 

which is the same expression for Nusselt number for 
single-phase free convection of liquid about a vertical 
plate in a porous medium [9]. 

(b) tlvd + a. According to Fig. 4, this limit 
corresponds to the case of large wall superheating and 
small subcooling. For r7J2 > 1, equations (28) and 
(30) become 

~V=[l-erf(~)][l+exp(*p”)+~~~] 

and 
(48a) 

P”(O) = - -L exp(- h’d) 

JIZ 
1 + 

,,“a ’ + *” ’ 1 
for &, > 2. (48b) 

Substituting equation (48b) into (42) yields 

W _ = 0.5642 

JRa,, u C 1 + exp(- ava) + . . . 1 , 'Ivd 

for &a > 2. (49) 

Nu, - = 0.5642 
4%. V 

(51) 

which are independent of R and SC. Physically, 
equations (50). and (51) show that as ?,+“a --t co, the 
degree of subcooling of the surrounding fluid liquid 
does not affect the heat transfer characteristics in the 
vapor layer. Equation (51) also represents the limiting 
case of free convection of a dry steam, and is indicated 
as horizontal dashed lines at the right-hand margin of 
Fig. 6. 

Equations (45b) and (51) suggest that a plot of 

Nw,d,tR% v vs &a would show clearly the limiting 
cases of tfvd -+ 0 and qvd + a. To this end, we multi- 
ply equation (43) by tlvd to give 

(52) 

The right-hand side of equation (52) vs qvd is plotted as 
a solid line in Fig. 7. The straight dashed lines in Fig. 7 
represent the limiting cases of qvd + 0 and qvd + x) 
given by equations (45b) and (51), respectively. It is 
convenient to represent the right-hand side ofequation 
(52) approximately by a power function of Iv& This can 
be achieved by writing 

E=[l+($r’m (53) 

where the value of m is determined according to the 
procedures recommended by Churchill and Usagi [ 1 l] 
by comparing the right-hand side of equation (52) to 
the right-hand side of (53). As a result, we found that 
m = 3, so that equation (53a) becomes 

%=[I +(~~I”’ (54) 

which is within f 5 % deviations from equation (52) 
for all values of f,t,& 

Temperature and velocity projiles 
The dimensionless temperature in the vapor phase, 

8,, for &a = 0.2 to qvd = 2.4 is shown in Fig. 8 where it 
is noted that for &a < 0.4, f3,(&) varies linearly with 
respect to vu. The dimensionless temperature profiles 
in the liquid phase, eL, is shown to be dependent on the 
value of fL(0) which in turn depends on the values of R, 
SC and nvd as given by equation (35). It is noted that the 
liquid boundary layer thickness decreases with 
increase in Sh or decrease in SC. The dimensionless 
vertical velocities f; and fL vs dimensionless distance 
are shown in the same plot. Note that the vertical 
velocity in the vapor phase is a constant which is 
represented by a horizontal line. As indicated by 
equation (32), the dimensionless vertical velocity and 
the dimensionless temperature profiles in the liquid 
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phase are identical in shape, and therefore no separate 
representation of the vertical velocity profiles in the 
liquid phase is needed. 

Appficati~n to heat transfer~o~ a dike 
Consider a dike 1OOm in height with an average 

surface temperature of 400°C is intruded into an 
aquifer (with K = lo-‘* m’, k,,, = 2.65 J s-i I(-‘, 
and kmeL = 1.6 J s-’ K-‘f at a tem~rature of 20°C. 
Suppose that the mean static pressure along the dike 
is at 10 atm and the saturated temperature 
corresponding to this mean pressure is 180°C. To 
apply the constant-prop~ty theory to this problem, 
we shall evaluate the properties of the vapor and liquid 
layers at their mean temperatures. Thus, the density, 
viscosity and specific heat of vapor will be evaluated at 
the mean temperature of (T, + T,)/2 = 290°C while 
that of the liquid phase at (T, + T,)/2 = 100°C. At 
these temperatures, we obtain the following properties 
from Hendricks, Peller and Baron [lo] : pu E 0.004 g 
cme3, cPv = 2.16Jg-‘K-‘,I*, = 1.96x10-4gcm-1 
s-1 9 CpL = 4.22Jg-iK-i,p, = 2.74x10-3gcm-1 

s-l, P4. = 0.9574 g cm-’ and jlLm = 4.67 x 10m4 
‘C-l, hrp = 2019 J g-l. 

9 2.0 - 
F 

I ‘; &f 1.5 - 

. x 
z’ la- ------ 

Free con&on of 
dry stsom asymptote 

‘b liquid asymptote 

0 
0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 

TVS 

20 30 

v(m) 

FE. 7. W,lJRa,. Jb vs T.@ FIG. 9. Boundary layer thickness along a dike. 

With these values, we obtain Sh = 0.2364, SC = 0.3323, 
and R = 0.565, and consequently we can determine nva 
by interpolation from Figs. 4(c) and (d) to get nva = 
0.49. With this value of qaa we obtain Nu, = 33.3 at 
x = 100 m where Ra,, v = 258 and Ra,. L = 425. The 
vapor film boundary layer thickness can be 
determined from the definition of qua which gives 6, = 
0.49x/ JRa,. v and the vapor boundary layer thickness 
is given by & = 5x/ JRa,, fi This is plotted in Fig. 9 
where it is shown that S, = 3 m and aL = 24.3 m at x 
= 1OOm. The vertical velocity profiles for the vapor 
and the liquid phases at x = 100 m are plotted in Fig. 
10. It is shown that there is a velocity discontinuity at 
the vapor-liquid interface which is a consequence of 
the Darcy’s law. The vertical velocity in the vapor 
phase is shown to be much higher than that in the 

Vopor Loyer 

FIG. 8. Dimensionless temperature and velocity profiles in the vapor and liquid layers. 
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EFFET DU SOUS-REFROIDISSEMENT DU LIQUIDE SUR L’EBULLITION EN FILM 
AUTOUR D’UNE SURFACE VERTICALE CHAUDE DANS UN MILIEU POREUX 

R&u&--On considbre l’ibullition en film avec convection naturelle autour d’une plaque verticaleisotherme 
dans un milieu poreux empli d’un Iiquide sous-refroidi. Par des approximations de couche limite, des 
solutions de similitude sont obtenues pour l%coulement induit de la vapeur et dans les couches liquides avec 
un interface distinct. A un nombre de Rayleigh donni pour la vapeur, le nombre de Nusselt dkpend 
uniquement de I’epaisseur du film de vapeur qui d&end elle-m&me de paramttres tridimensionnels lib au 
degrk de surchauffe de la paroi, ii I’extension du sous-refroidissement dans le liquide, aux rapports de 
propri&s des phases liquide et vapeur. On trouve que I’effet de l’accroissement du sous-refroidi~ment du 
fluide tend B diminuer fVpaisse.ur de la couche limite de vapeur, ;i accroitre l’+aisseur de la couche limite du 
liquide et ii augmenter le flux surfacique de chaleur. On discute I’application au transfert thermique par 

dbullition autour d’un dike introduit dans un aquifer. 
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DER EINFLUSS UNTERKUHLTER FLUSSIGKEIT AUF DAS FILMSIEDEN UM EINE 
VERTIKALE HEIZFLACHE IN EINEM PORdSEN MEDIUM 

Zusammenfassuag-Behandelt wird das Problem des Filmsiedens bei stationarer freier Konvektion urn eine 
beheizte isotherme vertikale Platte in einem poriisen Medium, das mit unterktihlter Fliissigkeit gefiillt ist. 
Mit den Grenzschichtniiherungen werden Ahnlichkeitsliisungen fiir die Auftriebsstromungen in den Dampf- 
und unterkiihlten Fliissigkeitsschichten mit ausgeprlgter Grenztliiche erhalten. Es ergibt sich, dag bei 
gegebener Rayleigh-Zahl des Dampfes die Nusselt-Zahl nur von der dimensionslosen Dampf-Filmdicke 
abhangt, die ihrerseits von drei dimensionslosen Parametem abhlngig ist, die mit der uberhitzung der 
Wand, der Unterkiihlung der umgebenden Fliissigkeit und einem Stoffwertverhaltnis der Dampf- und 
Fliissigphase in Beziehung stehen. Es ergibt sich, daB zunehmende Unterkiihlung der umgebenden 
Fliissigkeit zu einer Abnahme der Dicke der Dampf-Grenzschicht, zu einer Zunahme der Dicke der 
Fltissigkeits-Grenzschicht und zu einer Zunahme der Wiirmestromdichte an der ObetlIIche fiihrt. 
Andererseits fiihrt eine Zunahme der Wandiiberhitzung zu einer Zunahme der Dampfschichtdicke, einer 
Abnahme der Fliissigkeitsschichtdicke und zu einer Zunahme der Wiirmestromdichte an der Oberflache. Die 
Anwendung auf den Wlrmeiibergang beim Sieden urn he&s, in einen Aquifer eingedrungenes Ganggestein 

wird diskutiert. 

BJIMlIHME HEAOFPEBA ~KMfiKOCTM HA HJIEHOYHOE KMHEHME HA 
BEPTHKAJlbHOH HOBEPXHOCTM B HOPMCTOH CPEAE 

Aworauna - PaccMarprisaercr npo6neua crauriotiaptioro eCTeCTBeHHO-KOHBeKTHBHOrO nneHowior0 

KHneHHIl Ha HaQeBaeMOfi H30TepMH'ieCKOfi BepTHKSTbHOii unaCTUHe B IlOpHCTOk Cpene, 3aIlOnHeHHOfi 

HeLlOrJleTOfi )KWKOCTblO. C IIOMOIllbh3 npH6nHmeHH8 nOl-paHH'lHOrO CnOR nonyreHb1 ypaeHeHHR 

nono6Hn nJlR OIIUCaHHR BbI3BaHHOrO Cl(naMH BbITaJWHBaHHIl TCYCHHR B CJIOIlX napa B HenOrpeTOii 

*HnKocTa,Mexny KoTopbrm HhseeTcn YeTKasi rpaeuua pa3nena. HalneHo, YTO npH 3anaHHoM 3kiaqe- 

HHH wicna Penen nm napa wcno HyccenbTa onH03kiawio 3aBmHT 0~ 6e3pa3MepHOfi Tonuumbt 
nnetwi napa. KOTOPW B CBOIO ovepenb 3aBHCHT OT TpeX 6e3pa3MepHbIX napaMeTpoB, CBI13aHHbIX co 

CTeneHblo neperpeea CTCHKB, CTeneHbHJ Henorpeea orpymaioulefi )I(HnKOCTH H OTHOUleHHeM Mexny 

CBOikTBaMH napOBOfi H EHnKOfi @a3. Haiinetro, YTO C yBeJ,HVeHHeM HenOl-PeBa OKp)'WUO~efi xlin- 

KOCTH ronurmta norpamnntoro cnon napa yMeHbmaeTca, a TonumHa norpaHwiHor0 cnos mnKocm 

H TenJIOBOii nOTOK K nOBepXHOCTM j'BeJlH',HBFU‘,TCK.C n,,,'I-Oii CTOpOHbI, yBenH’,eHHe r,eperpeBaCTeHKA 

npl,BOnHT K)'BeJlA'ieHUlO TOnIlIHHbICnOR napa,yMeHbL!JeHHK, TOnIUHHbICnOR XWlnKOCTH W YBeJlHVeHMH, 

Tennonoro noroka x noeepxnocrn. PaccMorpen npm4ep nepeuoca Tenna npn KmeHHU y nepeMbviK8, 

IIOMelUeHHOfi B BOnOHOCHOMCJIOe. 


